
TIMSS & PIRLS

Lynch School of Education

International Study Center
	 CHAPTER 11: TIMSS 2019 SCALING METHODOLOGY	  
	 METHODS AND PROCEDURES: TIMSS 2019 TECHNICAL REPORT	 11.1

CHAPTER 11 

TIMSS 2019 Scaling Methodology:  
Item Response Theory, Population Models, 
and Linking Across Modes

Matthias von Davier

Introduction
This chapter1 describes the statistical and psychometric approaches underlying the analysis of the TIMSS 
2019 data. The first part of the chapter reviews Item Response Theory (IRT), a methodology frequently 
used in educational measurement that is also increasingly common in other applications of quantitative 
analysis of human response data such as patient reported outcomes, consumer choice, and other domains. 
Building on these foundations, the challenges introduced by a hybrid assessment database consisting of 
both computer-based and paper-based country data are addressed. In TIMSS 2019, half of the countries 
administered the computer-based version of TIMSS (known as eTIMSS) while the other half continued 
to assess the students using the paper-based version (paperTIMSS). 

The second part of the chapter describes an extension of IRT that allows controlling for mode of 
administration effects on student performance and that produces a latent variable scale representing 
student proficiency that is comparable across paper- and computer-based assessment. 

The third part of this chapter reviews the integration of achievement data from the TIMSS 
2019 mathematics and science items with contextual data from student questionnaires (and parent 
questionnaires at the fourth grade), and describes the statistical imputation model used for this purpose. 
This model is a combination of IRT approaches and a regression-based approach that utilizes the context 
data as predictors for the derivation of a prior distribution of proficiency, and is essentially the approach 
adopted by TIMSS since the first assessment in 1995. All three parts provide references and information 
for further reading as well as information about where in other chapters of this volume these developments 
are being described in terms of actual application to TIMSS 2019 data.

1	 The writeup of the psychometric methods presented in this chapter has many sources and the models presented here were developed by a variety of 
authors. The presentation as compiled here is focused on TIMSS 2019 and benefited greatly from conversations with, and reviews and proofreading by 
Michael O. Martin, Pierre Foy, Bethany Fishbein, and Liqun Yin.
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Modern Test Theory: Item Response Theory
Item Response Theory (IRT; Lord & Novick, 1968) has become one of the most important tools of 
educational measurement as it provides a flexible framework for estimating proficiency scores from 
students’ responses to test items. A Google search for the phrase “Item Response Theory” (IRT) produces 
1,740,000 hits as of September 15, 2020. 

TIMSS has been using IRT from the first round in 1995, initially in the form of the Rasch IRT model 
(Rasch, 1960; von Davier, 2016) and started to use more general IRT models (Lord & Novick, 1968) for 
the production of proficiency scores beginning with the 1999 cycle. An overview of recent applications 
of IRT in IEA studies was given by von Davier, Gonzalez, and Schulz (2020).

One of the major goals and design principles of TIMSS, but also other large-scale surveys of 
student achievement, is to provide valid comparisons across student populations based on broad 
coverage of the achievement domain. In mathematics as well as in science, this translates into several 
hundred achievement items, only a fraction of which can be administered to any one student given 
the available testing time (72 minutes at fourth grade, 90 minutes at eighth grade). Therefore, TIMSS 
uses an assessment design based on multi-matrix sampling or balanced incomplete block designs (e.g., 
Mislevy, Beaton, Kaplan, & Sheehan, 1992). As described in the TIMSS 2019 Assessment Design (Martin, 
Mullis, & Foy, 2017), these achievement items are arranged in blocks that are then assembled into student 
booklets (or booklet equivalents for eTIMSS) that contain different (but systematically overlapping) sets 
of item blocks. Because each student receives only a fraction of the achievement items, statistical and 
psychometric methods are required to link these different booklets together so that student proficiency 
can be reported on a comparable numerical scale even though no student sees and answers all tasks. 

IRT is particularly well suited to handle such data collection design in which not all students are 
tested with all items. The assumptions made for enabling IRT methods to handle these types of designs, 
commonly known as balanced incomplete block designs (e.g. von Davier, Sinharay, Oranje & Beaton, 2006; 
von Davier & Sinharay, 2013) can be described and tested formally (e.g. Fischer, 1981; Zermelo, 1929).

In terms of mathematical notation used in this chapter, the item response variables on an assessment 
are denoted by xi for items i = 1, …, I. The set of responses to these items is (xv) = (xv1, …, xvi) for student 
v. For simplicity, we assume xvi = 1 denotes a correct response and xvi = 0 denotes an incorrect response.

The achievement is assumed to be a function of an underlying latent proficiency variable, often in 
IRT denoted by θv, a real valued variable. Then, we can write 

(11.1)

https://timssandpirls.bc.edu/timss2019/frameworks/framework-chapters/assessment-design/
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where P(xvi | θv;ζi) represents the probability of an either correct or incorrect response of a respondent 
with ability θv and an item with a certain characteristic ζi. In IRT, these item specific effects are referred 
to as item parameters. Equation (11.1) is a statistical model describing the probability of a set of observed 
response given ability θv. This collective probability is the product of the individual item probabilities.

In TIMSS, the item-level probability model, P(xvi | θv;ζi), is given by an IRT model that provides 
a formal mathematical description, an item function, that describes how the probability of a correct 
response depends on the ability and the item parameters. One simple approach for an item function is 
the inverse of the logistic function, also sometimes called the sigmoid function depicted in Exhibit 11.1. 

Exhibit 11.1:	 Sigmoid Function of the Rasch Model

Sigmoid function of the Rasch model P(x = 1) = exp(T)/[1 + exp(T)], where T = a(θ  – b)  
can be used to linearly adjust for item characteristics.

Many IRT models used in educational measurement can be understood as relatively straightforward 
generalizations of the approach shown in Exhibit 11.1. For a = 1, where all assessment items contribute 
equally to the latent construct, this model is called the Rasch model (Rasch, 1960; von Davier, 2016). 
Why this and other more general approaches of IRT used in TIMSS are suitable choices for modeling 
assessment data can be seen in the following example. 

When looking at test performance by age (a proxy of ability maturation along developmental stages), 
Thurstone (1925) found that the proportion of respondents who successfully master different tasks is 
monotonically related to age. Exhibit 11.2 shows this relationship.
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Exhibit 11.2: Relationship between Age and Success on Tasks

Trace lines obtained by plotting percent correct against age from a series of tasks  
(Figure 5. in Thurstone, 1925). 

The similarity to the sigmoid shown in Exhibit 11.1 is obvious. When, instead of developmental age, 
the total number of correct responses on a longer test is used, similar graphs are obtained (Lord, 1980). 
Natural choices for a parametric function that can fit these types of non-linear relationships with a lower 
and an upper asymptote of zero and one, respectively, are the probit and the logit (e.g., Cramer, 2003). 

While the Rasch model specifies a single item parameter bi in the form of a negative intercept, 
more general IRT models can be defined that allow for variation of the trace lines in terms of slopes and 
asymptotes. TIMSS used the Rasch model in 1995, and since 1999 uses the three-parameter logistic (3PL) 
IRT model (Lord & Novick, 1968) for multiple-choice items, the 2PL IRT model for constructed response 
items worth 1 score point, and the generalized partial credit model (Muraki, 1992) for constructed 
response items worth up to 2 score points (Yamamoto & Kulick, 2000). 

The 3PL IRT model is given by 

	 	

(11.2)

and is a popular choice for binary scored multiple-choice items. In equation (11.2), ci denotes the pseudo 
guessing parameter—which, when set to 0.0, yields the 2PL for 1-point constructed response items— bi 

denotes the item difficulty parameter, and ai is the slope parameter. 



TIMSS & PIRLS

Lynch School of Education

International Study Center
	 CHAPTER 11: TIMSS 2019 SCALING METHODOLOGY	  
	 METHODS AND PROCEDURES: TIMSS 2019 TECHNICAL REPORT	 11.5

A model frequently used for binary and polytomous ordinal items (items worth up to 2 points in 
TIMSS) is the generalized partial credit model (Muraki, 1992), given by

	 	

(11.3)

assuming a response variable with mi + 1 ordered categories. Very often, the threshold parameters are 
split into a location and normalized step parameters, bix = δi  - τix, with ∑xτix = 0. 

The proficiency variable θv is sometimes assumed to be normally distributed, that is,  
θv~N(μ, σ). In TIMSS, a normal distribution is used to obtain initial proficiency estimates, as the 3PL 
model requires constraints of this and other types for identification (Haberman, 2005; San Martín, 
González, & Tuerlinckx, 2015; von Davier, 2009). Subsequently, this normality constraint can be relaxed 
and other types of distributions utilized (Haberman, von Davier & Lee, 2008; von Davier & Sinharay, 
2013; von Davier et al. 2006; von Davier & Yamamoto, 2004; Xu & von Davier, 2008a). 

When there is more than one ability, for example mathematics and science, or content and cognitive 
process subscales of these, these are represented in a d-dimensional vector θv = (θv1, …, θvd). In this case, 
one may assume a multivariate normal distribution, θv ~ N(μ, Σ) For the IRT models used in TIMSS, 
these d-dimensions, examples are main domains or subscales, are assumed to be measured by separate 
sets of items, so that 

	 	

represents d sets of I1 to Id responses, respectively. A d-dimensional version of the model in (11.1) is 
given by

	 	

(11.4)

with item-level IRT models (11.2) or (11.3) plugged in for P(xvik | θvk ; ζik) as appropriate. The model 
given in (11.4) is a multidimensional IRT model for items that show between-item multidimensionality 
(Adams, Wilson, & Wu, 1997; Adams & Wu, 2007). 

Central Assumptions of IRT Models

This section reviews important assumptions of the IRT modeling approach that are central to the types 
of inferences to be made in TIMSS and other international large-scale assessments. When met, these 
assumptions allow users of the data to make valid inferences regarding student proficiency in subject 
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domains such as mathematics and science. They ensure that proficiency estimates are comparable across 
participating countries and over time, and generalizable within the assessment domains described in the 
framework beyond the limited sample of items each student received.

IRT models describe the probability of a correct response, given examinees proficiency  and some 
item-specific parameters (such as the ai, bi described above). This, however, is not how IRT models are 
actually applied. Not only the item parameters but also the proficiency θ are unknowns that have to be 
estimated from the data, and all that analysts can rely on is a series of scored answers to a modest number 
of assessment items. What is needed, and what IRT provides for TIMSS, is a formal model that applies to 
an assessment domain as a whole, which is delineated in an assessment framework that describes the types 
of performances on topics viewed as representing the domain. The assumptions underlying IRT facilitate 
this goal in that they allow inferences about proficiency domains by providing a basis for proficiency 
estimates that depend on performance on assessment tasks in a well specified and scientifically testable 
way.

Unidimensionality
TIMSS assesses student achievement on several items students receive. Let I denote the number of items 
and let the response variables be denoted by x = (x1, …, xI). Unidimensionality means that a single 
quantity is sufficient to describe the probabilities of these responses to each of the items, and that this 
quantity is the same regardless of the selection of items a student received from within an assessment 
domain.

Denote Piv and Pjv as the probability of person v scoring 1 on items i and j.

and

with the same real valued θv in each expression. Unidimensionality ensures that the same underlying 
proficiency is measured by all the test items in the domain. This of course holds only if the assessment 
development aims at producing a set of items that are indeed designed to assess the same assessment 
domain and that test developers diligently refer to the content specifications outlined in the assessment 
framework. Unidimensionality would (very likely) not hold, for example, if half of the items in a skills test 
consisted of multiplication problems, and the other half were assessing gross motor skills such as success 
on a soccer penalty kick practice. As these are two seemingly unrelated skills, one would likely need two 
proficiency scales: Multiplication proficiency and Penalty kick proficiency. However, if domains are closely 



TIMSS & PIRLS

Lynch School of Education

International Study Center
	 CHAPTER 11: TIMSS 2019 SCALING METHODOLOGY	  
	 METHODS AND PROCEDURES: TIMSS 2019 TECHNICAL REPORT	 11.7

related, requiring for example different mathematical operations such as multiplication and addition, it 
is typically possible to report these appropriately using only one underlying proficiency variable.

Local Independence and Population Independence
The assumption of population independence states that the probabilities of producing a correct response 
for a given level of proficiency are not dependent on the group to which a test taker belongs. In TIMSS, 
this independence is important for inferences across countries, but also within countries for inferences 
across different student groups. Formally population independence holds if

for any contextual variable g. This also holds for groups defined by performance on xj on items j < i that 
precede the current item response xi. The response to a preceding item can be considered a grouping 
variable as well, as it splits the sample into those that produced a correct response and those who did not, 
in the simplest case. Applying the assumption of population independence, this yields

	 	
(11.5)

The assumption of local independence directly follows. It states that the joint probability of observing 
a series of responses, given an examinees’ proficiency level θ, can be written as the product of the item 
level probabilities. For a set of responses, local independence takes the form

	
.
	

(11.6)

While this assumption appears to be a rather technical one, it can be made more understandable by 
the following considerations. The proficiency variable intended to be measured is not directly observable, 
so one can only make inferences about it from observable response behaviors that are assumed to relate 
to this variable. The assumption of population invariance and local independence facilitates these 
inferences, in that it is assumed that once a respondent’s proficiency level is accounted for, responses 
become independent from each other, and also from other variables. That is, knowing whether or not a 
respondent taking a test has answered the previous question correctly does not help predicting the next 
response, if the respondent’s proficiency level θ is known.

According to the assumption of population invariance and local independence, if the model fits 
the data (and, for example, no learning occurs) and only one single proficiency is ‘responsible’ for the 
probability of giving correct responses, then no other variables (including language of the assessment, 
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citizenship, gender, and other contextual variables) are helpful in predicting a respondent’s answer to the 
next item. In this sense, the assumption of local independence and population invariance encapsulate 
the goal that there is only one variable that needs to be considered, and that estimates of this variable will 
fully represent the available information about proficiency. 

Monotonicity of Item-Proficiency Regressions
One important assumption of IRT models used for achievement data is the (strict) monotonicity of item 
functions. As seen in Exhibit 11.1, the Rasch model (but also the 2PL and 3PL IRT models) assumes that 
the probability of a correct response increases with an increasing proficiency. This is represented in the 
following inequality:

for all items i. This assumption ensures that the proficiency ‘orders’ the success on the items the students 
receive, and implies that students with a higher level on the proficiency will also have a higher probability 
of success on each of the items in the achievement domain. By implication, there is also a strict monotonic 
relationship between the expected achievement scores and proficiency θ:

	 	

(11.7)

The equation above shows that a person with a greater skill level θw compared to a lesser skill level 
θv will in terms of expected score E(S|θw) obtain a larger number of correct responses. This monotonicity 
ensures that the items and test takers are ordered as one would expect, namely that higher levels on the 
proficiency are associated with higher expected achievement—a larger expected number of observed 
correct responses—for any given item or item block measuring the same domain in an assessment booklet.

While the assumptions described above lay the foundation for IRT (and more generally, a large 
number of latent variable models), each of these assumptions can be relaxed to account for specific 
attributes of the data collection or assessment design. Models that have been described in this chapter 
are suitable for achievement data, and the same or variations of these models are used for the analysis of 
questionnaire data (as described in Chapter 16). 

Specialized variants of the IRT models described here are used for reporting on an achievement 
domain when many different test forms are used, as well as when additional factors have to be accounted 
for. One such example is the transition from paper- to computer-based assessment. In the context of 
TIMSS 2019, the move from paper-based to computer-based administration and the need to accommodate 

https://timssandpirls.bc.edu/timss2019/methods/chapter-16.html
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both administration modes in estimating student proficiency requires statistically sound extensions of IRT 
models. The next section describes such psychometric tools that can be applied to enable the transition 
to computer-based testing.

Accounting for Mode of Administration Effects
The change from paper- to computer-based testing requires careful consideration, as students taking 
the assessment are faced with different types of response modalities (e.g., a keyboard and mouse or a 
touchpad or touchscreen, compared to a pencil and a paper sheet to record the answers). This section 
describes methods for linking the paper-based and the computer-based assessment data, utilizing 
appropriate extensions of IRT models to establish this link. Chapter 13 of this volume presents country-
by-country data based on comparisons of the computer-based eTIMSS 2019 assessments and the paper-
based bridge assessments. These comparisons focus on observed item statistics as well as estimates of 
expected proficiency scores. 

Despite the advantages of computer-based assessments, the move from a paper- to a computer-
based assessment mode poses challenges for the measurement of trend over time because the results 
of an assessment administered in different modes may not be directly comparable. One concern is 
that some assessment items may not function the same across modes and may differ in their difficulty, 
discrimination, or with respect to the composition of skills they tap into. Mode effects may manifest as 
differential item functioning (DIF) by (at least) some of the items when comparing equivalent groups 
across different assessment modes. This, in turn, can affect measurement invariance and may cause 
undesirable changes in comparability of proficiency scores. 

The following section provides an overview of the types of violations of measurement invariance 
and presents extensions of the IRT models described above that can be used to examine mode effects. 
The approach presented here was used to select an appropriate adjustment for linking the proficiency 
scales across modes in TIMSS 2019.

Comparability and Measurement Invariance

There are different levels of measurement invariance (Meredith, 2003; Millsap, 2010) that have to be 
considered before comparing achievement from different groups or assessments across modes or over 
time. For valid comparisons, the assessments ideally should exhibit scalar or strong invariance for all items. 
This means that the same statistical quantities (IRT item parameters in this context) can be used to fit 
the items independent of the mode of administration. Weaker forms of invariance are metric invariance, 
where slope parameters are invariant across modes while intercepts are allowed to vary across modes or 
groups, and finally configural invariance, where the same loading pattern can be maintained. 

https://timssandpirls.bc.edu/timss2019/methods/chapter-13.html
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When accounting for mode effects, scalar invariance is the gold standard, while metric invariance is a 
somewhat less desirable but still a manageable level of invariance as long as proper linking designs can be 
used to adjust for mode differences (von Davier, Khorramdel, He, Shin, & Chen, 2019). In international 
assessment, any two cycles are different due to item release and new item development. Therefore, as long 
as a large proportion of the items reach scalar or metric invariance across modes, it is quite appropriate to 
have a subset of items with weaker forms of invariance, while most items show strong invariance over time 
and across modes. Trends measured across modalities are expected to be comparable in order to assess 
change, and trend measures should provide consistent statistical associations across modes, particularly 
with external variables central to establishing validity. Ensuring that a large proportion of items show 
strong invariance properties is crucial for these comparisons. It should be noted that mode effects are 
just one possible source of violations of measurement invariance. Other sources such as translation 
errors, technical issues, and language differences are routinely examined and treated as well (e.g. Oliveri 
& von Davier, 2011; von Davier et al. 2006; von Davier & Sinharay, 2013) in fully paper-based as well as 
in computer-based assessment.

Assessment Design Requirements for Studying Mode Effects

To deal effectively with mode effects, the assessment design needs to involve items that are by design 
comparable. If only student groups are comparable and take completely different items in paper and 
computer-based assessments, little can be said about mode differences as items are not comparable. 
Paper-based assessment items converted for computer delivery so that they can be considered equivalent 
in terms of content, presentation, and response requirements are referred to here as by design comparable 
items, or comparable items for short. About 80 percent of the TIMSS 2019 trend items are in this category 
and provided a strong link across assessment modes (see Chapter 12: Implementing the TIMSS 2019 
Scaling Methodology).

To evaluate the extent to which measurement invariance can be assumed when moving from a 
paper- to computer-based assessment, an appropriate data collection design is needed where the same 
items are administered in both modes to either the same test takers or equivalent groups of test takers. For 
operational efficiency, administering the assessment to each student in one mode only is often preferred, 
while randomly assigning students to modes so that groups taking the assessment in one or other mode 
are randomly equivalent and results can be compared. In this approach, the two modes of delivery can 
be understood as treatment assignments in an experiment, while the two randomly assigned (and hence 
equivalent) groups of students can be assumed to have the same proficiency distribution. 

To be able to generalize from such a bridge study, a sufficiently large and representative sample for 
both modes is needed at the level at which inferences are planned. For example, if the level of inference 
is how items function in two modes on aggregate at the international level, the two samples must cover 

https://timssandpirls.bc.edu/timss2019/methods/chapter-12.html
https://timssandpirls.bc.edu/timss2019/methods/chapter-12.html
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the range of abilities that are assessed across countries. On the other hand, if the level of inference is the 
detection and potential treatment of mode effects at the individual country level, the samples for each 
country would have to be sufficiently large to enable stable estimates of item parameters at that level. 

In TIMSS, this would at least require two large samples of at least the size of the TIMSS national 
sample (150 schools or more, and 1-2 classrooms of approximately 30 students), one for eTIMSS and 
the other for paperTIMSS. Because this was not possible due to limited resources being available at the 
national level, TIMSS 2019 opted for a bridge design to link modes at the international level, with eTIMSS 
countries selecting a full student sample for eTIMSS together with a smaller, randomly equivalent bridge 
sample for paperTIMSS. The bridge sample of 1,500 students provided about 375 responses per item per 
country and was sufficient to evaluate items for mode effects at the international level (i.e., aggregated 
across all samples). However, these sample sizes are not large enough to provide stable item parameter 
estimates for individual countries, and hence country-level studies in international contexts require a 
careful consideration of the limitations of the sample. An example of feasible analyses at the country level 
is given in Chapter 13 of this volume.

Once the data is collected in both modes, a bridge data set that provides comparable data on the 
previous mode of assessment, and a new mode data set, statistical analysis and psychometric modeling 
can commence. 

Analysis of Mode Effects Using Graphical Model Checks

As an initial comparison prior to any psychometric modeling approaches or IRT-based analysis, graphical 
model checks (e.g. Khorramdel & von Davier, 2016; Rasch, 1960) can provide important insights. These 
checks reveal whether the rank order of item parameters and the relations between item parameters agree 
strongly (as they should) in the eTIMSS and paperTIMSS samples, ensuring that invariance assumptions 
implemented in subsequent statistical and psychometric modeling are tenable. For this analysis, item 
parameters for comparable items were estimated separately for the eTIMSS and paperTIMSS samples 
but pooled across countries to focus on mode comparisons only and to ensure sufficient sample sizes for 
accurate calibrations.

Exhibits 11.3 through 11.6 show examples of location parameter comparisons between modes using 
the eTIMSS and paperTIMSS data (including bridge) for each grade and subject assessed by TIMSS. It 
should be noted that eTIMSS bridge samples responded to trend items only, so comparisons for “new” 
items are less informative for mode comparisons due to different countries taking the new items in 
different modes.

https://timssandpirls.bc.edu/timss2019/methods/chapter-13.html
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Exhibit 11.3:	 Location Parameter Comparison between eTIMSS and paperTIMSS 2019— 
	 Grade 4 Mathematics

Exhibit 11.4:	 Location Parameter Comparison between eTIMSS and paperTIMSS 2019— 
	 Grade 4 Science
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Exhibit 11.5:	 Location Parameter Comparison between eTIMSS and paperTIMSS 2019— 
	 Grade 8 Mathematics

Exhibit 11.6:	 Location Parameter Comparison between eTIMSS and paperTIMSS 2019— 
	 Grade 8 Science
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Exhibits 11.3 through 11.6 show that item location parameters (item difficulties) are highly correlated 
across the eTIMSS and paperTIMSS modes. A similar level of agreement was found for other parameter 
types. These results suggest there is excellent agreement between paper- and computer-based items for 
items that were deemed comparable based on design and response similarity across modes. The presence 
of some outliers, however, suggests that some items differ between modes and may require separate 
parameter estimates. Note that there is always estimation error in item parameter estimates and, therefore, 
parameter estimates from two finite samples are never perfectly correlated, even for two independent 
samples taking the same assessment in the same mode. However, the cross-mode correlations between 
item parameters of paper- and computer-based items for TIMSS 2019 are very high, suggesting that a 
strong link can be established so that computer- and paper-based results across countries can be reported 
on the same scale.

Before such a link can be established, the extent to which some items may exhibit mode effects, 
and may require separate estimates, has to be carefully examined during IRT scaling. The next section 
provides an overview of IRT model extensions that facilitate the examination of mode effects and for 
linking across assessment modes by testing for, and if present, utilizing the invariance of item parameters 
across modes.

Mode Effect Models 

While graphical model checks provide a useful starting point for examining overall agreement between 
item parameters from different samples and for exploring potential drivers of these differences, they do 
not provide the most rigorous way to account for mode effects in proficiency estimation (e.g. von Davier 
& von Davier, 2007). Extensions of IRT models such as the ones described subsequently can be used 
to analyze mode differences with a high level of statistical rigor in order to obtain unbiased proficiency 
estimates by utilizing the equivalency of the bridge and eTIMSS samples in the analysis.

IRT models have been extended to include various types of mode effect parameters in order to 
provide information about whether the mode effect is best described by an overall difference between 
assessment modes (i.e., the difference between modes is changing the difficulty of all comparable 
assessment items by a constant), whether it is a person- or group-specific effect that may have an impact 
differentially on different groups (i.e., some test takers are more affected by mode differences than others), 
or whether it is an item-specific effect that is only impacting a subset of tasks. 

These different hypotheses about mode differences can be checked by formalizing these within a 
general latent variable model (von Davier, 2008; von Davier, Xu, & Carstensen, 2011) and applying these 
models to the eTIMSS and bridge data. Taking the two-parameter logistic model (Birnbaum, 1968) as 
the base model, von Davier et al. (2019) introduced additional model parameters to formalize various 
assumptions of how mode effects may impact item functioning. Let 
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(11.8)

denote the probability of a correct response by a respondent with proficiency θ for an item i with 
parameters αi, βi. The notation used in (11.2) can be transformed to the customary notation by letting  
a = α /1.7 and b = –β /α.

Mode Effects on the Item Level
The most parsimonious mode effect assumption is that all items show strong invariance and need to 
be “shifted” by a certain amount with respect to their difficulty when comparing groups taking the 
assessment in one mode of administration with another. This could be because, for example, reading any 
item stem or stimulus is generally harder or easier (by the same amount for all items) on the computer, 
or responding using the keyboard or a mouse is more tedious or simpler than bubbling in a response on 
an answer sheet. Here, the mode is a “treatment” that changes the apparent average proficiency between 
groups, which needs to be corrected for using the equivalency of randomly assigned groups taking 
the bridge and the eTIMSS assessment, respectively. A mode treatment effect of this type that applies 
homogeneously to all comparable items can be controlled for by adding the same constant to each of the 
item difficulty parameters. This general mode effect parameter δm quantifies how much more difficult (or 
easy) all the comparable items appear when presented in a mode other than the reference mode (11.9). In 
terms of standard IRT linking designs, this general mode effect shift is similar to a non-equivalent groups 
design with anchor test (NEAT). However, the groups were randomly assigned, so the non-equivalence 
is really caused by the treatment (mode) that has an overall effect, which can be controlled for through 
the δm that reflects treatment differences.

Formally, for items presented in the “new” mode, we assume that 

(11.9)

This can be thought of as a model for twice the number of items. The indicator function  
1{I + 1, …, 2I}(i) equals 1 if the item index is in the second half, that is, the range I + 1, …, 2I. The first  
1, …, I items are the paper-based items without mode effect, and the items in the new mode are indexed 
by I + 1, …, 2I. In this notation it is assumed that item i and item i + I are the same but administered 
in different modes. This leads to a model with 2I items (instead of I items for each delivery mode) in 
which the difficulty parameters for items presented in one mode (say, paper) are assumed to be βi for  
i = 1, …, I and the item parameters for the other mode (say, computer) are appended as parameters  
βj for j = I + 1, …, 2I and arranged in the same order and constrained to follow βj = βi – δm. 
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In the bridge design, each test taker receives a subset of items from either the paper-based items, 
indexed by i = 1, …, I, or the computer-based items indexed by i = I + 1, …, 2I. The two assignments 
are based on randomly equivalent respondents that only differ in the treatment they received, the mode 
of assessment. Note that this form of adjustment is equivalent to assuming the item parameters for 
comparable items to be strongly invariant and adjusting only for the overall mean differences, between 
bridge and eTIMSS sample. This model can be estimated by assuming one ability distribution across 
groups assessed in different modes and adding the mode parameter δm as an explanatory effect to the 
items administered in the new mode.

In contrast to the assumptions of a general mode effect parameter, δm, one could argue that not all 
items are affected when moving from paper to computer: Some could be more difficult, some could be 
at the same difficulty level, and some could even get easier. This leads to a model with weaker invariance 
that adds an item-specific effect δmi to the difficulty parameter. This can be written as a DIF parameter, 
quantifying item-specific changes from paper presentation, namely

(11.10)

The difference in comparison to the model of metric (or “weak”) factorial invariance (Meredith, 
1993) is that the computer-based item difficulties relative to the paper-based difficulties are decomposed 
into two components, that is βi + I = βi  – δmi, while continuing to assume that αi + I = αi for the slope 
parameters. This decomposition indicates that the difficulties are shifted by some (item or item feature)-
dependent amount, the shift being applied to one mode on an item-by-item basis—one that is being 
considered the reference mode with no shift. Assuming ability equivalence, the average treatment 
(mode) effect can be assessed by calculating . This average effect can be compared against 
the estimated average effect from model (11.9).

The model in equation (11.10) with constraints across both modes on slope parameters, as well as 
potential constraints on the DIF parameters, establishes weak (also sometimes called metric) invariance 
(e.g., Meredith, 1993) IRT model, whereas model (11.9), which TIMSS 2019 was able to use, establishes 
strong invariance. The average mode effect is equivalent to a shift in group means when the item 
parameters are invariant in model (11.9), whereas model (11.10) allows individual items to deviate from 
this average mode shift. The larger the number of constraints of the type δmi = c for some constant 
adjustment can be assumed, the more we approach a model with strong factorial invariance, that adjusts 
only for overall mode treatment differences. Note that an overall adjustment as used in TIMSS 2019 
retains the equality of means and variances of the latent variable in both modes as both groups were 
randomly assigned to modes but selected from a single population.
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Mode Effects on the Respondent or Proficiency Level
For completeness of discourse, if it cannot be assumed that the mode effect is a constant (even if item 
dependent) shift for all respondents, then an additional proficiency  may be required to accurately 
model response probabilities for the new mode. This leads to a multidimensional model with a 
second latent variable that is added to the item function for items administered in the new mode. The 
expression αmiϑ in the model (11.11) below indicates that there is a second slope parameter αmi for items  
(i = I + 1, …, 2I) administered in computer mode and that the effect of the mode is person dependent 
and quantified through a second latent variable ϑ. We obtain

	 	
(11.11)

Note that the common slope parameters, αi, and item difficulties, βi, are, as before in models 
(11.9) and (11.10), equal across modes. However, an additional “mode-slope” parameter αmi, for  
i = I + 1, …, 2I, is estimated, with constant αmi = 0 for i ≤ I for the reference items that are not affected by 
mode changes. For the joint distribution f(θ, ϑ) one assumes uncorrelated latent variables, cov(θ, ϑ) = 0, 
to ensure identifiability in the bridge design.

In equation (11.11) it is assumed that the effect of the person “mode” variable varies across items, 
which may be the more plausible variant, but a model with item-invariant effects αmϑ (a Rasch variant of 
a random mode effect) also is feasible. However, an item-specific model is more likely to provide better 
model data fit. As in model (11.10), the link between modes can be viewed as increasingly more invariant 
as more slope parameters can be assumed to be αmi = 0 for items in the new mode. Each constraint  
αmi = 0 makes the respective item response functions for items i and i + I identical across modes.

Application of Mode Effect Models to TIMSS 2019
The models presented above were available to accommodate a range of mode effects and item invariances 
across the two TIMSS assessment modes. However, based on the very good agreement between bridge 
and eTIMSS sample estimates (see Exhibits 11.3–11.6) of item parameters for the TIMSS 2019 comparable 
items, it was concluded that only a small overall mode adjustment constant was necessary (see Chapter 
12). This adjustment was estimated separately for mathematics and science at the fourth and eighth 
grades. Additional analyses with standard IRT linking methods (Haebera, 1980; Marco, 1977; von Davier 
& von Davier 2007; Xu & von Davier, 2008b) were in agreement with the results obtained from model 
(11.9) as well as with the graphical model checks, so that this convergence of results supported the use 
of an overall mode adjustment.

Using a single adjustment of parameter for each subject/grade combination based on the randomly 
equivalent samples from the bridge and eTIMSS samples keeps the scaling methods in line with prior 

https://timssandpirls.bc.edu/timss2019/methods/chapter-12.html
https://timssandpirls.bc.edu/timss2019/methods/chapter-12.html
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TIMSS trend scaling methods, and enables country-level mode effect analyses as presented in Chapter 13. 
The eTIMSS sample and bridge sample were of central importance for linking through model (11.9) 
because, as randomly equivalent groups with a large set of comparable items as anchors, they form the 
basis for estimating the adjustment using the proficiency distribution estimates in the two modes. 

After establishing the size of the item parameter adjustment required by model (11.9), this 
adjustment was applied to each of the comparable items in scaling the eTIMSS data, resulting in eTIMSS 
data on the same scale as the bridge data. The effect of the adjustment was verified in terms of item fit 
and scaling outcomes using country adjustment compared to the separate scaling of items in equivalent 
groups designs (see Chapter 12).

The major outcome of the foregoing procedure was that the eTIMSS 2019 proficiency data were 
successfully linked to the existing TIMSS proficiency scales so that results from the paper- and the 
computer-based assessments can be directly compared without any further adjustment. Very high levels 
of comparability of item parameters across the two administration modes were established, so that the 
mode-adjusted item parameters can be used in the population model described in the following section. 
This population model is used to generate plausible values for estimation of group level results and to 
examine the relation between student proficiency and other contextual variables. The strong link of 
paperTIMSS and eTIMSS across modes based on comparable items and equivalent groups design enabled 
reporting TIMSS 2019 on the same scale for all participating countries. It also formed the basis of an 
important and final step that provides the proficiency database by means of a country specific population 
modeling approach as described in the next section.

Population Models Integrating Achievement Data and  
Context Information
TIMSS uses a latent regression (or population) model to estimate distributions of proficiencies based 
on the likelihood function of an IRT model, as introduced in the first section of this chapter, and a 
latent regression of the proficiency on contextual data (von Davier, Gonzalez, & Mislevy, 2009; von 
Davier et al., 2006). This approach can be viewed as an imputation model for the unobserved proficiency 
distribution that aims at obtaining unbiased group-level proficiency distributions. The approach requires 
the estimation of an IRT measurement model, which provides information about how responses to the 
assessment items depend on the latent proficiency variable. In addition, the latent regression, which 
provides information about the extent to which background information is related to achievement, is used 
to improve estimates by borrowing information through similarities of test takers with respect to context 
variables and the way these relate to achievement. The population model is estimated separately for each 
country and in TIMSS 2019 five plausible values (PVs) representing the proficiency variable are drawn 

https://timssandpirls.bc.edu/timss2019/methods/chapter-13.html
https://timssandpirls.bc.edu/timss2019/methods/chapter-12.html
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from the resulting posterior distribution for each respondent in each cognitive domain. It is important to 
note that PVs are not individual test scores and should only be used for analyses at the group-level using 
the procedures described in this report and available, for example, through the IDB analyzer.

Population models are examples of high dimensional imputation models, and utilize a large number 
of context variables in the latent regression to avoid omission of any useful information collected in the 
questionnaires (von Davier et al., 2006; von Davier et al., 2009; von Davier & Sinharay, 2013). Prior to 
estimating the latent regression model, a principal component analysis (PCA) of the student context 
variables is used to eliminate collinearity by identifying a smaller number of orthogonal predictors that 
account for most of the variation in the background variables (90% in the case of TIMSS 2019). 

In order to fully describe the proficiency estimation procedure, the data from the context 
questionnaires are combined with the responses obtained from the achievement items. The complete 
observed data for a person n can be expressed as dn = (xn1, …, xnI, gn, zn1, …, znB), where zn1, …, znB 
represent the context information; xn1, …, xnI represent the answers to the achievement items, and gn 
represents the country or population the respondent was sampled from. 

The estimation of student proficiency with IRT models can utilize distributions of proficiency in the 
population of interest. A population model that incorporates contextual data utilizes this information by 
specifying a second level model that predicts the distribution of proficiency as a function of contextual 
variables. The conditional expectation in this model is given by

	 	

(11.12)

This expectation utilizes the available information on how context variables relate to the proficiency. 
The distribution of proficiency is assumed to be normally distributed around this conditional expectation, 
namely θn ~ N(μn, σ) . 

Together with the likelihood of the responses expressed by the IRT model, this provides a model 
for the expected distribution of proficiency given the context data zn1, …, znB and the responses to the 
TIMSS items. In other words, the model implements the assumption that the posterior distribution of 
proficiency depends on the context data as well as on the observed achievement. Given the amount of 
contextual data is much larger than the number of countries typically participating in an assessment, the 
added value of using a model that includes contextual information for every test taker is considerable. 
Therefore, if background variables are selected so that correlations with proficiency are likely, one obtains 
a distribution around the expected value given in (11.12) that is noticeably more accurate than a country-
level distribution of proficiency.
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Formally, this approach can be described as a multiple (latent) regression model that regresses 
the latent proficiency variable on background data collected in context questionnaires. The estimation 
of the regression is addressed separately within countries. The regression is country specific since it 
cannot be assumed that context information has the same regression effects across different participating 
countries. Mothers’ highest level of education, for example, is well known as a strong predictor of student 
performance, but this association can be moderated by other factors at the level of educational systems, 
so that in some countries it may be stronger than in others.

There are several ways to address the estimation of the latent regression parameters. In TIMSS and 
other large-scale assessments, the latent trait (proficiency) is determined by the IRT model estimated 
across countries in a previous step. Then the (latent) regression model is estimated treating the item 
parameters from the previous IRT estimation as fixed quantities. This ensures that the invariance 
properties that were determined through IRT estimation and potential mode effect adjustments across 
countries are applied equally to each national dataset (see for example, Mislevy & Sheehan, 1992; Thomas, 
1993; von Davier et al., 2006; von Davier & Sinharay, 2013).

Group-Level Proficiency Distributions and Plausible Values

The goal of the psychometric methods described above is to produce a useful database that contains 
comparable, valid, and reliable information for reporting student proficiency and for secondary users 
of the TIMSS assessment data. This information comes in the form of likely proficiency estimates 
for all respondents given their responses to the assessment items and their answers to the context 
questionnaires. Integrating the IRT model described in the first part of this chapter with the regression 
model introduced in the previous section, we can estimate the probability of the responses, conditional 
on context information, as

	
.
	

(11.13)

This equation provides the basis for the imputation of proficiency estimates that are commonly 
known as plausible values (Mislevy, 1991). To allow a more compact notation, we use
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This model enables inferences about the posterior distribution of the proficiency θ, given both the 
TIMSS assessment items x1, …, xI and the context information z1, …, zB. The posterior distribution of 
the proficiency given the observed data can be written as

	
.
	

(11.14)

An estimate of where a respondent n is most likely located on the proficiency dimension can be 
obtained by 

	 	
(11.15)

The posterior variance, which provides a measure of uncertainty around this expectation, is 
calculated as follows:

	 	
(11.16)

Using these two estimates (the mean and variance) to define the posterior proficiency distribution, 
it is possible to draw a set of plausible values (Mislevy, 1991) from this distribution for each student. 
Plausible values are the basis for all reporting of proficiency data in TIMSS, allowing reliable group level 
comparisons because they are based not only on students’ answers to the TIMSS items but also reflect 
how contextual information is related to achievement.

Note that the correlations between context and proficiency are estimated separately in each country, 
so that there is no bias or inaccurate attribution that could affect the results. Although the expected value 
of the country level proficiency is unchanged whether context information is used or not, the advantage 
of including context information plays out when making group-level comparisons. It can be shown 
analytically and by simulation (von Davier et al., 2009) that including context information in a population 
model eliminates bias in group level comparisons using this information, and using country specific 
population models with context variables ensures there is no bias in country level average proficiency 
data.

In summary, the plausible values used in TIMSS and other large-scale assessments are random draws 
from a conditional normal distribution
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(11.17)

that depend on response data xn as well as context information zn estimated using a group-specific 
model for each country g. That means two respondents with the same item responses, but different 
context information will receive a different predicted distribution of their corresponding latent trait. 
Although this may seem incoherent—and would not be adequate to assign test scores to individual 
students—it is important to remember that TIMSS and similar assessments are population surveys, 
not individual assessments, and that it is necessary to include context information in order to achieve 
unbiased comparisons of population distributions (e.g. Little & Rubin, 1987; Mislevy, 1991; Mislevy & 
Sheehan, 1992; von Davier et al., 2009). Consequently, plausible values are not and should never be used 
or treated as individual test scores.

In order to provide a more detailed picture of the analytic methods, this chapter focused on the 
rationale behind the methodologies used in TIMSS 2019, ranging from IRT, to mode effects, to population 
modeling for unbiased reporting of group level proficiency distributions. Additional information is 
available in the chapter on scaling outcomes (Foy, Fishbein, von Davier, & Yin, 2020) and the chapter on 
examining country-level mode related quantities (von Davier, Foy, Martin, & Mullis, 2020). 

https://timssandpirls.bc.edu/timss2019/methods/chapter-12.html
https://timssandpirls.bc.edu/timss2019/methods/chapter-13.html
https://timssandpirls.bc.edu/timss2019/methods/chapter-13.html
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